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Abstract

Suitability modelling and mapping methods were developed to predict spatial distri-

butions and population abundance of fish and macroinvertebrate species in Florida

estuaries and coastal zones. Habitats were mapped in Pensacola Bay, Tampa Bay, and

Charlotte Harbor using data from fisheries-independent monitoring. Starting in 1997,

suitability functions from habitat suitability index models were linked to habitat grids

to create seasonal maps for early-juvenile, juvenile, and adult life-stages. After 2003,

habitat suitability models (HSM) were linked to seasonal habitat grids to create sea-

sonal maps validated by reciprocal transfer of suitability functions between estuaries.

A quantitative method was used with five factor models and models with fewer envi-

ronmental factors for four species in 2005 and for 11 species by life-stages in 2009. In

2006, suitability functions transferred from Charlotte Harbor were linked with habi-

tat grids for Rookery Bay and Fakahatchee Bay and HSM maps produced for three

time periods to test transferability to estuaries lacking long-term monitoring. Analy-

ses in 2012 demonstrated that HSMmaps for Tampa Bay derived independently from

earlier suitability functions were almost identical to HSM maps created using recent

suitability functions. Salinity was the most significant environmental variable for pre-

dicting abundance in models for species life-stages in the Peace River and Charlotte

Harbor, although nutrient concentrations from upriver may have influenced species’

abundances associated with low (<5 psu) to moderate (5–10 psu) salinities. Popula-

tion abundance estimates forCharlotteHarborwere derived fromseasonalHSMmaps

created in 2019 and 2021. The 2021 paper compared changes in seasonal population

numbers betweenBaseline andMinimumFlows associatedwith projectedwaterwith-

drawals from thePeaceRiver. Electronic logbooksweredeveloped in2001and2004 to

collect data on shrimp fishing vessels andHSMmaps for theWest Florida Shelf created

for 16 months in 2004–2005. Methodologies evolved as enabling technology became

available.
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2 RUBEC ET AL.

1 INTRODUCTION

As part of the Magnuson–Stevens Conservation and Management

Act of 1996, the U.S. Congress mandated that the National Marine

Fisheries Service (NMFS) develop guidelines to assist fisheries man-

agement councils nationwide in the creation of essential fish habi-

tat regulations for fishery management plans and that the councils

describe these habitats in text, tables, and maps (NMFS, 1996). Essen-

tial fish habitat (EFH) was defined as those waters and substrates

necessary for spawning, breeding, feeding, or growth to maturity. It

is the geographic area where a species occurs at any time during its

life and comprises substrate and water column characteristics that

focus on the species’ distribution. The prescribed extent of EFH should

be based on the amount of habitat necessary to maintain a managed

species at a target production level that provides the maximum bene-

fit to human society, including the catch of the species. In addition, the

councils were required to identify habitat areas of particular concern.

The Magnuson–Stevens Reauthorization Act required the councils to

create fishery ecosystem plans to better relate fishery species and

fisheries to their supporting ecosystems.

Early attempts to define linkages between fish and ‘habitat’ stem

from the U.S. Fish and Wildlife Service (FWS) Habitat Evaluation Pro-

gram that mostly studied freshwater and riparian environments (FWS,

1980a, 1980b, 1981). The habitat suitability index (HSI) modelling

approach derives from ecological theory which states that the ‘value’

of an area of ‘habitat’ for the productivity of a given species is deter-

mined by habitat carrying capacity as it relates to density-dependent

population regulation (FWS, 1981). Suitability indices have been used

as input toHSImodels to create suitability functions fitted across envi-

ronmental gradients. When abundance data are used as input to the

model, higher suitability values indicate that areas with higher rela-

tive abundance are ‘more suitable habitat’ (Bovee, 1986; Terrell, 1984).

Suitability indices (SIs) multiplied by the amount of area constituting

the index score canbeused todeterminehabitat unit areas (HUAs) that

quantify the spatial extent of suitable habitats (FWS, 1980b, 1981).

Fisheries managers do not have adequate information about estu-

arine and marine habitats to effectively manage recreational and

commercial fisheries in the southern United States (Elliott et al., 2016;

Rubec & McMichael, 1996). For many estuarine and marine species,

what constitutes ‘habitat’ and how it relates to spatial variations in

occurrence or abundance is not known. Rather than being a sim-

ple function of any single factor, areas of higher or lower species’

abundance are typically dependent upon composites of several envi-

ronmental factors.

The fishery management councils do review some EFH plans. How-

ever, stock assessments are still largely based on mortality matrices

across years linked with time series of abundance. Stock assessment

models are only recently being designed to include environmental fac-

tors and/or habitat information. They are not derived from spatial

information in maps created using a geographic information system

(GIS).

While the conclusions concerning stock assessments are still gen-

erally true, there are a growing number of scientists across research

and management institutions and associated with fisheries agencies

worldwide that see the need to support place-based management

of coastal marine ecosystems (Young et al., 2007). There is grow-

ing awareness that the escalating crisis in marine ecosystems—from

biodiversity losses and transformed food webs to marine pollution

and warming waters—is in large part a failure of governance. Many

scientists have advocated reforms centred on the idea of ecosystem-

basedmanagement. To date, however, a politically and administratively

feasible method for translating this attractive concept into an oper-

ational management practice has not emerged. A practical way to

solve this problem features place-based management—a strategy that

calls for integrated management of the full suite of human activities

occurring in spatially demarcated areas identified through a procedure

that takes into account biophysical, socioeconomic, and jurisdictional

considerations.

Models and GIS can provide objective means to support fisheries

management. Various statistical, modelling, and mapping approaches

have been used to relate species’ distributions and abundance to

habitats at locations in estuaries and coastal zones worldwide. Spatial-

temporal models have been developed to support (a) the placement of

marine protected areas (Friedlander et al., 2007; Peterson et al., 2007),

(b) the delineation of essential fish habitat (Trimoreau et al., 2013;

Valavanis et al., 2004), and (c) ecosystem-based fisheries management

(Elliott et al., 2016; Grandos-Diesseldorff 2009), marine spatial plan-

ning (Dineshbabu et al., 2019; Douvere 2008), and for other reasons

important for fish species management and/or fisheries management

(Franca&Cabral 2016;Huijelos et al., 2016;Mathiopoulos et al., 2015).

But there is no consensus concerning the best modelling and mapping

methods.

The papers reviewed herein developed habitat suitability models

that related frequency of occurrence or abundance indices with asso-

ciated environmental data and used GIS to map species’ distributions

and abundance in Florida estuaries and coastal zones. SIs associated

with suitability functions scaled to the same maximum value (1 or 10)

were used as input toHSImodels. Gear-corrected (GC) catch-per-unit-

efforts (GC-CPUEs) were used with habitat suitability models (HSMs).

TheHSManalyses involveddevelopmentofmultiple regressionmodels

to predict CPUEs in relation to environmental factors using general-

ized additive models (GAMs) or generalized linear models (GLMs and

generalized linear modelling [GLIMs]). GC-CPUEs were graphed using

the Statistical Analysis System (SAS) or the data visualization, dynamic

linking, and analytic capabilities of SAS JMP not present in SAS.

2 METHODS AND RESULTS

Methods for mapping habitats and modelling and mapping spatial

distributions of fish and invertebrate species in Florida were ini-

tially developed by a committee comprised members from the Fish

& Wildlife Research Institute (FWRI), NOAA Strategic Environmental

Assessments Division, and the University of Miami. Since the spatial

distributions and abundance of species life-stages change over time,

the analyses have been conducted over various yearly intervals. As
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RUBEC ET AL. 3

technologies evolved, we have used a variety ofmodelling andmapping

approaches. The advantages and disadvantages of these approaches

are discussed associated with the papers published by the first author

from 1997 to present.

HSI models prior to 1997 were developed by others to support

rapid decision-making using qualitativemethods based on expert opin-

ion. Many of the early HSI models developed for various species were

not verified or validated with actual field data. Rigorous sampling

designs that provide comprehensive temporal or spatial coverages

were rarely employed. These problems have limited the development

of quantitative HSI models capable of supporting fishery management

strategies.

2.1 Estuarine studies

FWRI currently conducts fisheries-independent monitoring (FIM) to

collect fish abundance, water quality, and habitat type data in five of

18 larger estuaries (McMichael 1991; Nelson et al., 1997). We recog-

nized the potential of habitat suitability models to predict the spatial

distribution and relative abundance of a species life-stage in a similar

nearby estuary lacking long-term fisheries monitoring. Models linked

to GISmay provide ameans of mapping species distributions in estuar-

ies not currently surveyed by fisheries monitoring. Hence, we wanted

to determine whether it was possible for suitability functions to be

transferred from one estuary to another without significant loss of

precision and biological interpretability.

2.2 GIS software for suitability modelling

The Arc Macro Language code used to conduct HSI modelling in

Pensacola Bay was developed by the NOAA-Strategic Environmen-

tal Assessments Division in 1997 to run with raster-based modules

within the ArcInfo GIS. In 1998, FWRI’s GIS staff rewrote the code in

Avenue to run HSI models with the ArcViewGIS Spatial Analyst exten-

sion. The codewas furthermodified and refined during 1999 to display

HSI maps along with a histogram and tables. The tables output from

the model depicted observed mean SIs and predicted mean SIs within

four predicted HSI zones. During 2000, the Avenue scripts were mod-

ified to facilitate running HSMs by creating GC-CPUEs. The Avenue

scripts were rewritten as a Visual Basic application using Arc Objects

to port the models to ArcGIS 8.3. The software installed on a com-

puter allowed the user to select the estuary, habitat suitability model,

species, life-stage, habitat factors, season, and years to produce either

within or transfer maps (Figure 1). The scripts could run either HSI or

HSMmodels.

2.3 Pensacola Bay

2.3.1 Habitat mapping

Continuous data that vary along a gradient, such as bathymetry, dis-

solved oxygen, salinity, and temperature, were acquired from the

Florida Department of Natural Resources and the Environmental

Protection Agency’s EMAP Program (Christensen et al., 1997). The

environmental data were independently mapped by georeferenced

(latitude/longitude) sampling stations. The point data were inter-

polated into continuous, contoured surfaces using inverse distance

weighting, and then rasterized into a grid format. Each gridwas created

with the same coordinate system, and cells among grids were aligned

in geographic space to facilitate inter-grid processing. All grids had the

same cell size of 1000 m2. At this resolution, each environmental grid

map in Pensacola Bay consisted of approximately 37,000 cells. Each

environmental grid was then categorized: salinity was mapped in 5 g/L

increments, water temperature in 2˚C isotherms and, dissolved oxy-

gen in 1 mg/L increments. Substrate was categorized using a modified

Shepard’s classification schemeandwas classified as sand, silt, and clay.

Thedistributions of submerged aquatic vegetation (SAV) andemergent

vegetation (EV) were determined by aerial photography and digitized

by the FWS. SAV and EV grid cells were classified as either present or

absent.

2.3.2 Habitat suitability index modelling

HSImodelsweredeveloped forPensacolaBay toexamine relationships

for frequency of occurrence of eastern oyster (Crassostrea virginica),

white shrimp (Litopenaeus setiferus), and spotted seatrout (Cynoscion

nebulosus) with hydrological and biological parameters (Christensen

et al., 1997). Pensacola Bay was chosen as the test area because

its hydrographic conditions were considered representative for most

Gulf of Mexico estuaries. The first step in developing HSI models

was to conduct a comprehensive data and literature search. This was

combined with an expert review process to identify biological and

environmental variables to include in the model. Salinity, water tem-

perature, dissolved oxygen content, bathymetry, substrate type, and

the presence or absence of SAV and EVwere selected tomodel habitat

suitability.

Hypothetical salinity scenarios were modelled to evaluate the

impact of changes in freshwater inflow on the species being modelled

in the Pensacola Bay system (Christensen et al., 1997). To accomplish

this, baywide salinitieswere increasedby5g/L for thehigh salinity time

period. Likewise, baywide salinitieswere decreased by5 g/L for the low

salinity time period.

GIS technology was explicitly incorporated to produce a ‘seascape’

view of relative suitability of locations in geographic space through

time. The ArcInfo 7.03 GRID module was used to conduct HSI mod-

elling. Themodelswere runduring four timeperiods toaddress fluctua-

tions in species distributions (Christensen et al., 1997). Representative

periods for the Pensacola Bay HSI model were determined by char-

acterizing salinity conditions in the estuary. Seasonal depth-averaged

salinity was modelled from a subset of field salinity data collected

between 1970 and 1994. Salinity time periods consisted of high salin-

ity (September–November), decreasing salinity (December–January),

low salinity (February–April), and increasing salinity (May–August).

These periods represent the typical salinity conditions experienced

under average freshwater inflow conditions. Water temperature was
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4 RUBEC ET AL.

F IGURE 1 Computer front-end created by Fish &Wildlife Research Institute geographic information system (FWRI GIS) staff in 2005 for
running analyses in selected estuaries using pull-downmenus to create within or transfer habitat suitability modellingmaps. The pull-downmenus
selected the season, estuary, within/transfer suitability functions, species, life-stage, years, environmental factors, and initials of the analyst. The
light green area indicated the areamodelled. The systemwas capable of creating either habitat suitability index (HSI) maps or habitat suitability
model (HSM)maps.

contoured for the same months as the salinity time periods to ensure

temporal uniformity in themodels.

2.3.3 HSI maps

White shrimp and juvenile spotted seatrout HSI maps for Pensacola

Bay exhibited great spatial and temporal sensitivity to fluctuating envi-

ronmental parameters (Christensen et al., 1997). Highest suitability

values were observed in EV and SAV habitats during the increasing

salinity time period when water temperatures were at an optimum

level. Suitability was moderate in the non-vegetated habitats through-

out the rest of the bay. Low suitability was observed throughout the

bay during the decreasing salinity time period, when temperatures

declined to 10–14˚C. Spotted seatrout have been observed to move

to warmer waters of deep channels and depressions to avoid thermal

stress in the winter.

Moderate HSI values for juvenile seatrout were observed bay-

wide during the low and high salinity time periods as temperatures

declined away from or increased towards the optima (Christensen

et al., 1997). Similar patterns were observed with the adult seatrout

HSI distributions. Optimum and high suitability was predicted for shal-

low, vegetated habitats during the increasing and high salinity time

periods. Optimum and high suitability zones were more extensive for

adults compared to juveniles. Approximately 90% of the bay was con-

sidered high or optimum habitat for adult seatrout during these time

periods. Cooler temperatures during the decreasing and low salin-

ity time periods resulted in moderate or low suitability throughout

the unvegetated portions of the bay. Vegetated habitats in the lower

portion of the bay were ranked as high suitability during the low

salinity time period and moderate during the decreasing salinity time

period.

2.3.4 Model validation

Due to the lack of consistent and robust FIM data in Pensacola Bay,

a qualitative assessment was conducted to validate the white shrimp
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RUBEC ET AL. 5

and spotted seatrout models (Christensen et al., 1997). Local fisheries

biologists and commercial fishermen compared the HSI maps to their

collective expertise. Consensus was reached that the HSI maps por-

trayed a reasonable representation of potential distributions of white

shrimp and spotted seatrout in the Pensacola Bay system. They con-

cluded that the scenarios depicting potential effects of habitat change

can be easily determined using HSI modelling in conjunction with GIS

technology.

In order to test model performance and transferability, SI values

developed in Pensacola Bay were applied to 10 years (1987–1996)

of FIM data collected by the Texas Parks and Wildlife Department in

Galveston Bay (Clark et al., 2002). Juvenile spotted seatrout CPUE

data from Galveston Bay bag seine samples were used to test juve-

nile HSI model performance, while gill net samples were used to assess

the adult HSI model from Pensacola Bay across suitability zones. Plot-

ted linear regressions revealed increasing relationships betweenmean

CPUEs from Galveston Bay and mean HSIs from Pensacola Bay across

suitability zones for juvenile spotted seatrout bag seine data and adult

gill net data, respectively.

2.4 Tampa Bay and Charlotte Harbor

2.4.1 Habitat mapping

Environmental data, collected by the FWRI FIM program, were aggre-

gated across years (1996–2014) to ensure adequate sample sizes and

interpolated with GIS using universal linear kriging to create sea-

sonal habitat grids (surface and bottom) for salinity, temperature, and

dissolved oxygen in Tampa Bay (TB) and in Charlotte Harbor (CH)

(Rubec et al., 1999, 2001). Then, the surface and bottom habitat

grids were averaged. Conventional seasons included fall (September–

November), winter (December–February), spring (March–May), and

summer (June–August). Depth was mapped by interpolation of NOAA

bathymetry data. Bottom type was initially mapped using SAV and

bare-bottom categories (Rubec et al., 1998a, 1998b). Later studies

used sand, mud, and SAV distributions to map bottom type in each

estuary (Rubec et al., 1999, 2001).

Recently, the seasonal habitat grids for CH were improved using

data supplied by the Southwest Florida Water Management District

(SWFWMD). The months comprising non-conventional seasons were

chosen based on differences in freshwater inflows: fall (October–

December), winter (January–March), spring (April–June), and summer

(July–September) (Rubec et al., 2019, 2021). Non-conventional sea-

sonal temperature, salinity, and dissolved oxygen grids were derived

from FWRI FIM data (Rubec et al., 2019). Sand and mud polygons in

CH were obtained from NOAA, and the distribution of SAV in CH was

derived from aerial photography conducted by SWFWMD in 2012.

Bathymetry data, from a sonar survey in CH conducted by Ping Wang

in 2012 (University of South Florida, Department of Geology), were

obtained from SWFWMD.

2.4.2 Habitat suitability index modelling

Rubec et al. (1999) tested the hypothesis that it was possible to pre-

dict the geographic distribution of fish species by life-stage in estuaries

lacking FIM using transferred SIs. SI functions for CH in the fall were

created by fitting polynomial regressions to smooth-mean CPUEs by

depth, by salinity and by temperature, and graphing mean CPUEs by

bottom type; then scaling the CPUE functions to the same maximum

value (10) in each estuary to create SI functions using SAS JMP. The

HSI models integrated the environmental SIs across gear types. Then,

SIs for each environmental variable output from the HSI model were

assigned to cells associated with corresponding intervals in the CH

habitat grids. ESRI’s ArcView GIS Spatial Analyst module was used to

average the SIs assigned to cellswithin the habitat grids to create a pre-

dicted HSI grid (Figure 2). The predicted HSI grid was partitioned into

low to optimum zones to create a seasonal HSI map for early-juvenile

spotted seatrout in the fall. Increasing observed mean CPUEs across

predictedHSI zoneswithin theCHmapwere used as a verification test.

The process was repeated using independent SI functions transferred

from TB assigned to the fall habitat grid layers for CH.

The CH HSI map for early-juvenile spotted seatrout in the fall,

derived using SI functions associated with polynomial regressions and

habitat grids from within CH, was not significantly different from the

CHHSI map derived using SIs transferred from TB (Rubec et al., 1999).

Grid cell frequencies in low to optimumzoneswere compared between

within and transferred data. The HSI map in CH derived from trans-

ferred TB SIs was quite similar to the map based on within CH SI data.

Most of the differences between the maps were in the low and mod-

erate zones. The differences between the within and transfer maps for

CHwere ascribed to differences in the fitted functions for depth. Early-

juvenile spotted seatrout occurred at greater depths in TB than were

found inCH.Using thesemethods to createHSImaps for early-juvenile

seatrout for the fall season inCH tended to confirm the hypothesis that

it was possible to predict the geographic distribution of fish species by

life-stage in estuaries lacking FIM using transferred SIs.

Similar methods were used to develop seasonal HSI models in

2001 to predict spatial distributions by other species life-stages and

seasons in TB and in CH (Rubec et al., 2001, 2016d). Reciprocal

transfer of SI functions between estuaries was conducted to test

whether HSI modelling could be used to predict seasonal distribu-

tions of species life-stages in estuaries lacking FIM. FIM datasets for

each estuarywere analyzed from 1989 tomid-1997. The analyses pro-

duced HSI maps by life-stage (within and transfer) in the two estuaries

for early-juvenile, juvenile, adult Spotted Seatrout; juvenile, adult Bay

Anchovy; and juvenile, adult Pinfish. The derived SI functions for the

environmental factors were plotted to compare similarity of the func-

tions in each estuary. Similar seasonal HSI maps were derived by only

using the factors associated with themost similar suitability functions.

To verify the reliability of seasonal HSImaps, observedmeanCPUEs

wereplotted across four predictedHSI zones (Rubec et al., 2001). Anal-

yses showed that fish densities increased from low to optimum zones
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6 RUBEC ET AL.

F IGURE 2 Drawing depicting geometric-mean computations of suitability indices (SIs) assigned to habitat layers to produce a predicted
habitat suitability index (HSI) map. Computations were donewith SIs in HSI models. Fitted SIs from splines and graphs across environmental
gradients output from themodels were assigned to cells in habitat grids for temperature, salinity, depth, and bottom type. Then, the SIs associated
with the habitat grids were averagedwithin the cells.

for the majority of species life-stages examined. For CH, observed

mean CPUEs increased across low to optimum HSI zones for 78.6% of

the 28 predicted HSI maps produced using CH habitat grids andwithin

SI functions. Similarly with SI functions transferred from TB, 82.1% of

28 cases showed increasing mean CPUEs across four HSI zones using

seasonal CH habitat grids. In TB, increasing mean CPUEs occurred in

42.9%of 28 cases using seasonal TB habitat grids and SI functions from

within TB. Increasingmean CPUEs occurred in 50% of 28 cases for HSI

maps created from TB habitat grids and SI functions transferred from

CH.Most of the low increasingCPUEscores inTBwere associatedwith

seasonal HSI maps for the life-stages of spotted seatrout. The low per-

centageof increasingCPUEscores inTBoccurredbecauseTB is deeper

than CH, and the SI by depth functions transferred from CH did not

account for this.

To test the similarity of within and transfer seasonal HSI maps, zone

values (low to optimum) for within HSI maps were compared on a cell-

by-cell basis with zone values of the corresponding HSI map for the

sameestuaryderived fromtransferredSI functions (Rubecet al., 2001).

Eachpair of seasonalHSImapswere considered tobe similar if≥60%of

the cells by zonewere scored the same in themajority of theHSI zones.

To evaluate whether the maps minimally identified the most suitable

habitats associated with higher species life-stage abundances, differ-

ences between predictions of the ‘optimum’ zones by the two models

were also computed. Better results were obtained when the similarity

of optimum zones was compared. The similarity of within and trans-

ferred SI functions used with the HSI models accounted for the high

similarity of predicted maps for juvenile Pinfish and for juvenile Bay

Anchovy in each estuary. The dissimilarity of SI functions input intoHSI

models accounted for why other species life-stages had dissimilar HSI

maps. Another issue was that annual data were used to create suitabil-

ity functions associated with the HSI modelling (i.e., FIM data were not

analyzed to create seasonal SI functions).

HSI models were developed for TB and CH (Rubec et al., 1998a,

1998b, 1999, 2001). Many of the HSI models published prior to 1998

were created using SI values derived from the literature and/or expert

opinion (Rubec et al., 2001). The 2001 paper concluded that the HSI

algorithm in its present format is aheuristicmodel useful forqualitative

interpretations andmay be inadequate for quantitative analysis and as

a prediction tool. HSImodelsmaybe very useful in data-poor situations

where some type of rapidmanagement response is required. However,

when fish abundance and environmental ‘habitat’ data of high spatial

and temporal resolution are available, significant improvements in the
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RUBEC ET AL. 7

development of predictive models of fish-habitat associations can be

obtained by usingmore contemporaneous regression-basedmethods.

2.4.3 Habitat suitability modelling

Kupschus (2003) developed GAMs using S-Plus to predict the spa-

tial distributions of early-juvenile spotted seatrout ≤50 mm standard

length in TampaBay, CharlotteHarbor, and Indian River Lagoon. GAMs

were used to fit splines to CPUEs in relation to environmental vari-

ables within each estuary. The approach compared within CPUEs with

transferred CPUEs (derived from FIM sampling data collected from

January 1996 to December 1999) at station locations in each estuary.

The GAMs created within each estuary were tested in terms of their

transferability to the other estuaries. Only the Indian River Lagoon

GAMs appeared to reliably predict CPUEs, when transferred to the

other two estuaries. This could be due to differences in depth ranges

between the estuaries and/or because the GAMs did not account for

the high frequency of zero catch values in the FIM datasets.

FWRI contracted Jerald Ault at the University of Miami to develop

SAS software for the standardization of gear-types (Ault & Smith

1998, 2000). This involved the computation of gear-correction factors

to adjust CPUEs for various gears to the gear-type with the high-

est mean CPUE. CPUEs for 10 fish species and for pink shrimp were

gear-corrected within the HSM to produce seasonal splines with fitted

GC-CPUEs across environmental gradients.

FWRI also contracted Jerald Ault to develop methods for analyses

of station-specific data using statistical procedures capable of deal-

ing with the non-normality of FIM datasets (Ault & Smith 2001; Ault

et al., 2002). Single regression models were first developed using SAS

for each habitat variable. To satisfy error distribution assumptions of

the GLIM procedure, estimation was carried out in two stages. Dual-

regressions were necessary due to the high frequency of zero catches

in the FIM datasets. One stage utilized presence–absence data to fit

logistic regression models, and the other stage used non-zero CPUEs

to fit generalized linear regression models. Multiplying the probability

of occurrence, p, predicted by logistic regression with u, the predicted

non-zero CPUE from GLIM yielded the predicted CPUE. The single

regressionpandumodelswere then combined intomultiple regression

habitat suitability models. Backward selection was employed to elim-

inate non-significant regression coefficients to derive a final multiple

regressionmodel for both p and u.

Seasonal HSMs built by adding terms using SAS created suitability

functions with smooth wide curves (Ault & Smith 1998, 2000). But this

was very time consuming (Rubec et al., 2003). Seasonal splines fitted to

mean CPUEs across environmental gradients (Figure 3) using SAS JMP

required less programming and provided better fits to the data (Rubec

et al., 2005, 2016d). The function peaks were narrower, providing bet-

ter predictions of the environmental ranges that have the highest fitted

CPUEs. So, we adopted this method with subsequent studies using

CPUEs. The disadvantage of fitting splines tomeanCPUEs across envi-

ronmental gradients is that the variability associated with the original

CPUEs is lost making it impossible to create confidence intervals for

the fitted splines and bottom type histograms.

2.5 Report to U.S. Fish and Wildlife Service

Spatial models and methods were developed to conduct habitat suit-

ability modelling in TB and CH (Rubec et al., 2003). The models

predicted seasonal distributions of estuarine species from data col-

lected by FIM and other sources. Several methods were developed to

fit suitability functions across environmental gradients. ScaledSIswere

used as input to HSI models. Mean CPUEs derived from polynomial

regressions were used as input to HSM models. Both models calcu-

lated the geometric mean of abundance indices (either SIs or CPUEs)

associated with grid-based habitat layers within the ArcView GIS Spa-

tial Analyst to produce predicted seasonal habitat suitabilitymaps. The

models were verified by overlaying CPUEs onto the predicted maps to

determine whether observed mean CPUEs increased across predicted

suitability zones.

2.6 Reciprocal transfer between Tampa Bay and
Charlotte Harbor

The main goal of the study by Rubec et al. (2005) was to conduct

HSM analyses using seasonal suitability functions reciprocally trans-

ferred between the two estuaries (Figure 4). The full models used five

factors in the HSM for temperature, salinity, dissolved oxygen, depth,

and bottom type. Then, we varied the number of factors to evaluate

whether fewer factors improved performance of theHSMs for predict-

ing the relative abundance of species life-stages. GC-CPUEs, derived

from the splines and ahistogram for bottom typeoutput from theHSM,

were assigned to the habitat grid layers using the ArcView Spatial Ana-

lyst module within ArcGIS 8.3. Computations were conducted across

the raster-based grids within the GIS to produce predicted seasonal

HSMmaps for pink shrimp, BayAnchovy, Spotted Seatrout, and pinfish,

depicting four suitability zones for each species’ life-stage. The HSM

output included tabulated mean GC-CPUEs (No. of fish/m2) within

each suitability zone and the areas of each zone in hectares. Maps

created from abundance indices within each estuary and transferred

from the other estuary were used to test transferability of the mod-

els between TB and CH. In 2009, the number of species life-stages was

increased from4 to 11 (Rubec et al., 2009).With large sample sizes, the

suitability functions for the two estuaries were similar and most of the

seasonal within and transfer HSMmaps derived for each estuary were

similar.

The life-stages analyzed during 2006 in CH and TB included size

ranges for spotted seatrout, pinfish, bay anchovy, pink shrimp, red

drum, southern kingfish, sand seatrout, common snook, hardhead cat-

fish, spot, and sheepshead (Table 1). Due to the complexity of running

HSMs by varying the number of factors, the analyses were conducted

outside the GIS (Figure 5). Optimum zones associated with seasonal

HSM map pairs (within and transfer) were similar 78% of the time in

CH and 91% of the time in TB.
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8 RUBEC ET AL.

F IGURE 3 Suitability functions consisting of splines fitted tomean catch-per-unit-effort across temperature (T), salinity (S), dissolved oxygen
(O), and depth (D) gradients for juvenile Pinfish during spring in Tampa Bay. The bottom type (B) histogramwas not used with this HSM analysis.

2.7 Verification tests

The seasonal HSM analyses were extended in 2009 to include

22 life-stages (early-juvenile, juvenile, and/or adult) of 11 species

(Rubec et al., 2016d). The HSMs run in CH and in TB were verified

by graphing increasing mean observed GC-CPUEs (within and trans-

fer) across predicted HSM zones using SAS JMP. The criteria used to

assess the efficacy of themapswere (1) that meanGC-CPUEs increase

across HSM zones, and (2) the zones in HSM maps associated with

transfer (independent) suitability functions appear similar to the HSM

mapswith functions fromwithin each estuary. The optimumzones usu-

ally were themost similar (Figure 6). Suitability functions TSOD are for

temperature, salinity, dissolved oxygen, and depth.

Seasonal HSM maps created in each estuary during 2009 exhib-

ited verification scores of 1, which indicated that mean GC-CPUEs

increased across HSM zones (Rubec et al., 2016d). The within and

transfer HSMs that were run with five factors did not work as well as

models built by varying the number (<5) of factors.

Seasonal HSMs produced a relatively high proportion of increas-

ing verification scores for within maps, respectively, in CH (62.5%) and

in TB (79.6%), but exhibited a low proportion of increasing transfer

scores (51%–52%) in each estuary. Increasing mean GC-CPUEs across

HSM zones were found with several seasonal HSM maps produced

with fewer than five factors, making it difficult to determine which one

was the best HSM map. Differences in the depth functions for TB and

CHprimarily account for the differences in verification scores between

the within and transfer HSMmaps.

Since we did not have a statistical model to select the best combi-

nation of factors, it was necessary to run HSMs to determine which

factor combinations worked best. The study (and all previous stud-

ies) was based on a time-consuming trial and error. Over 4000 HSM

maps were created during 2009 associated with varying the number

of factors used in the HSM (Rubec et al., 2016d). While we did HSM

analyses with fewer than five factors, we did not evaluate all factor

combinationsbecause thereare31possible combinationsof one to five

factors.

2.7.1 Transfer of suitability functions to Rookery
Bay and Fakahatchee Bay

The transfer of suitability functions between estuaries were used to

predict species distributions and abundance in estuaries lacking long-

term FIM (Rubec et al., 2006). The study was conducted to assess the

influence of changes in freshwater inflow on distributions and relative

abundance of estuarine species in Henderson Creek and Rookery Bay.

Originally, freshwater entered the bay via storm-generated runoff. The

creation of a canal system in the 1960s, which funnels water through

a weir situated on Henderson Creek, altered the pattern of freshwater

inflow. To assess the effect of these changes, monitoring was initiated

in Rookery Bay and Fakahatchee Bay. The latter estuary served as a

control because it still had largely natural freshwater inflows.

When the study was initiated in 2003, no long-term FIM data had

been collected in Rookery Bay (Rubec et al., 2006). Consequently, FIM

data collected in CH were analyzed to create suitability functions for
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RUBEC ET AL. 9

F IGURE 4 Flow diagram showing the process for producing
seasonal within and transfer habitat suitability model (HSM)maps in
Tampa Bay and in Charlotte Harbor with suitability values
(gear-corrected catch-per-unit-efforts [GC-CPUEs]) assigned to
corresponding intervals in the habitat grids. The suitability values
were obtained either fromwithin the same estuary or transferred
from the other estuary to facilitate reciprocal cross-validation of the
HSMmaps.

22 life-stages of 10 species of fish and for pink shrimp. Abundance

indices transferred from CH were applied to Rookery Bay and Faka-

hatchee Bay habitat layers, so we could conduct raster-based HSM for

a dry season (spring) and two wet seasons (during summer) in Rookery

Baywith differing freshwater inflows. The length ranges for the species

life-stages are presented in Table 1.

The modelling in Rookery Bay and in Fakahatchee Bay found that

most of the 22 life-stages of 11 speciesmodelled responded to changes

in salinity, related to changes in freshwater inflow (Rubec et al., 2006).

Salinities were similar in both estuaries (30–33 psu) during May 2003

(the dry season). Marked differences in salinity within optimum zones

were found between Fakahatchee Bay (8–16 psu) and Rookery Bay

(30–33psu) duringAugust 2002. Inflowdata obtained fromSWFWMD

indicated that the higher salinities in Rookery Bay during August 2002

were related to the fact that theweir situatedat theheadofHenderson

Creek reduced the inflow of freshwater entering Rookery Bay.

2.8 Dual regression modelling

With advances in statistics, it became possible in 2012 to fit splines

using delta-gamma GAMs associated with generalized additive mod-

els for location, scale, and shape (GAMLSS) with programs written in

R (Rigby & Stasinopoulos 2005; Stasinopoulos & Rigby 2007). FWRI’s

statistician, Richard Kiltie, modified the delta-gamma GAM software

to support analyses of zero-inflated FIM data (Rubec et al., 2016c).

He adapted the software to support HSM analyses in Florida estuar-

ies. Version 54 of the Kiltie software used raw CPUE data from TB as

input, gear-corrected the CPUE data within the HSM, fitted splines to

GC-CPUEs across environmental gradients for temperature, salinity,

dissolved oxygen, and depth, and created a mean GC-CPUE histogram

for bottom type. To deal with zero-inflation of the FIM data, the pro-

gram separately fitted splines to positive GC-CPUEs and frequency of

zero occurrence data across environmental gradients, and then com-

bined the functions and output predicted GC-CPUE functions for each

environmental gradient. Themain advantage of the delta-gammaGAM

program in R was that it developed 31 models for combinations of

one to five factors and selected the best model with the lowest Akaike

information criterion (AIC).

2.9 Tampa Bay studies

Most of our previous verifications used suitability functions created

from the same CPUE data that were used to create the HSM maps.

We compared observed mean GC-CPUEs with predicted mean GC-

CPUEs associated with the zones in the HSM maps for 1989–1998.

This is an internal verification.When an independent dataset is used to

create suitability functions, it becomes an external validation. Hence,

the reciprocal transfer of suitability functions from the other estuary

between TB and CH was associated with external validations (Rubec

et al., 2005, 2009).

An early-recent approach was taken in 2012 with GC-CPUE func-

tions derived from HSM analyses using v58 of the Kiltie software

in R. The species analyzed in TB were adult southern kingfish, adult

sheepshead, adult hardhead catfish, and juvenile pink shrimp collected

during the summer. Figure 7 depicts the internal verification for adult

southern kingfish during summer in which observed mean GC-CPUEs,

created from 1998 to 2009 data, were plotted against predicted mean

GC-CPUEs associated with the zones in an HSM map created using

CPUE data collected from 1998 to 2009 (recent time period). Inter-

nal verifications were also done for the other species life-stages. We

did external (independent) validations for TB by plotting mean GC-

CPUEs derived from 1989–1997 FIM data (early time period) against

mean GC-CPUEs in HSMmaps derived from data collected from 1998

to 2009 (recent time period) with adult southern kingfish (Figure 8).

External validations were also done with the other species life-stages

previously listed. The early (external) and recent (internal) summer

maps were almost identical across the HSM zones for the life-stages of

the four species. The suitability functions used to create external HSM

maps for the early time period were very similar to those used to cre-

ate internal HSM maps for the recent time period. Mean GC-CPUEs

byHSMzoneswere presented associatedwith the internal verification

and external validation analyses of juvenile pink shrimp during summer

in TB (Rubec et al., 2016c). However, there was concern that sample

sizes were too low for the early and recent analyses of the four species

life-stages. Hence, we decided not to use the early-recent approach in

subsequent studies.

Using v70 of the Kiltie software in R, FIM data from TB were

analyzed seasonally in 2013–2014 for early-juvenile, juvenile, and/or

adult life-stages of pink shrimp, common snook, bay anchovy, hardhead

catfish, southern kingfish, pinfish, sand seatrout, sheepshead, spotted
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10 RUBEC ET AL.

TABLE 1 Length ranges used by Rubec et al. (2006) and in other studies of Rubec.

Life-stage Species Scientific name Length range

Juvenile+adult Hogchoker Trinectes maculatus 10–100mmSL

Juvenile+adult Blue crab Callinectes sapidus 10–150mmCW

Juvenile Bay anchovy Anchoamitchilli 15–29mmSL

Adult Bay anchovy Anchoamitchilli ≥30mmSL

Juvenile Pinfish Lagodon rhomboides 10–99mmSL

Adult Pinfish Lagodon rhomboides ≥100mmSL

Juvenile Sand seatrout Cynoscion arenarius 10–149mmSL

Adult Sand seatrout Cynoscion arenarius ≥150mmSL

Early-juvenile Southern kingfish Menticirrhus americanus 10-119mmSL

Adult Southern kingfish Menticirrhus americanus ≥180mmSL

Early-juvenile Spotted seatrout Cynoscion nebulosus 10–119mmSL

Juvenile Spotted seatrout Cynoscion nebulosus 120–199mmSL

Adult Spotted seatrout Cynoscion nebulosus ≥200mmSL

Juvenile Common snook Centropomus undecimalis 150–279mmSL

Adult Common snook Centropomus undecimalis ≥280mmSL

Adult Hardhead catfish Ariopsis felis ≥110mmSL

Early-juvenile Sheepshead Archosargus probatocephalus 10–139mmSL

Juvenile Sheepshead Archosargus probatocephalus 140-239mm SL

Adult Sheepshead Archosargus probatocephalus ≥240mmSL

Juvenile Pink shrimp Farfantepenaeus duorarum 5–17mmCL

Adult Pink shrimp Farfantepenaeus duorarum ≥18mmCL

Early-juvenile Red drum Sciaenops ocellatus 10–299mmSL

Early-juvenile Spot Leiostomus xanthurus 10–149mmSL

Juvenile Spot Leiostomus xanthurus 150–199mmSL

Abbreviations: CL, carapace length; CW, carapace width; SL, standard length.

seatrout, and red drum (Rubec unpublished). HSMs were run by vary-

ing the number of factors included in themodels from1 to 5 to account

for31possible combinations. Thedelta-gammaGAMprogramselected

the best TB model with the lowest AIC. The software created bet-

ter graphical outputs including confidence intervals around the fitted

splines and graphs for bottom type and gear type. Confidence intervals

were computed by bootstrapping the results 500 times. The predicted

GC-CPUE grids (created by transferring GC-CPUEs from the fitted

splines and bottom type histogram to the habitat grids and then aver-

aging the habitat grids) were partitioned using equal areas in theGIS to

create seasonal HSMmaps.

2.10 Charlotte Harbor

A contract was obtained from the SWFWMD in 2015 to assess the

impact of potential freshwater withdrawals from the tidally influenced

lower Peace River and CH. Delta gammaGAMswere applied with sea-

sonal modelling of eight species life-stages in the CH study area with

highest abundances in low to moderate salinities (Rubec et al., 2019,

2021). The species life-stages analyzed in 2015–2016 are presented in

Table 2. The v73delta-gammaGAMs inR associatedwithGAMLSS var-

ied the number of factors in models for 31 combinations of one to five

factors. The best seasonalmodel for each species life-stagewas chosen

based on it having the lowest AIC.

Fitted splines were created using delta-gammaGAMs for both posi-

tive CPUE (+CPUE) data (Mu) and probability of zero occurrence data

(Nu) across environmental gradients for each species life-stage ana-

lyzed by season in CH (Rubec et al., 2019, 2021). The CPUEs for each

gear type were gear-corrected and combined (Mu X Nu) within the

HSM to create GC-CPUE splines for each environmental factor and

histograms for bottom type, season, and year. The v73 software also

created confidence intervals associated with the suitability functions

and histograms. An example is depicted for juvenile+adult Hogchoker

in the fall (Figure9). Then,GC-CPUEs fromthe fitted splines for salinity,

temperature, dissolved oxygen, and depth, and mean GC-CPUEs from

the histogram for bottom type were assigned to corresponding inter-

vals in the habitat grids. A key improvement in v73 was the addition of

a year term in the delta-gammaGAMs that allowed the computation of

seasonal GC-CPUEs by year from 1996 to 2013.

The HSM studies prior to 2018 partitioned the predicted GC-CPUE

grids to determine the spatial extent of HSM zones using equal areas

or equal intervals. When equal intervals were used, they were found

to produce very small optimum zones for some species life-stages that
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RUBEC ET AL. 11

F IGURE 5 Comparison of habitat suitability model (HSM) analyses within geographic information system (GIS) and outside GIS

were not visible in the HSMmaps (Rubec et al., 2019). Equal areas pro-

duced visible optimumzones in theHSMmaps.However, inmost cases,

the optimum zones filled the rivers.

The natural breaks is an objective method was used with recent

HSM studies (Rubec et al., 2019, 2021). The natural breaks method is

an option included in the ArcGIS Spatial Analyst. The method speci-

fies that the classes will be based on natural groupings inherent in the

data (Jenks, 1967). Break points are identified by choosing class breaks

that group similar values to maximize the differences between classes.

The natural breaks is an objective quantitativemethod, which used the

GC-CPUE data in the predicted grids to determine the spatial extent of

brackish zones in seasonal HSM maps for each species life-stage. The

optimum zones for resident species were visible in HSMmaps in parts

of the rivers adjoining CH.

To simulate the effects of flow reductions on salinity distribu-

tions in tributary rivers for CH, a coupled three-dimensional (3D)–two

dimensional vertical (2DV) hydrodynamic model was developed by

SWFWMD (Chen, 2020). Non-conventional seasonal temperature and

seasonal salinity grid data averaged across years (2007–2014) were

used with HSM analyses of species life-stages in CH for Baseline

and Minimum Flows conditions associated with projected freshwater

withdrawals (Rubec et al., 2021).

Salinity was significant during most seasons for the species life-

stages listed for both studies in CH (Rubec et al., 2019, 2021). The

optimum zones in seasonal HSM maps for the first six species life-

stages, classified as estuarine residents, indicate that they were most

abundant in either low or moderate salinities in the lower Peace River

duringmost of the year (Rubec et al., 2019). The 2019 study found that

each estuarine resident species life-stage occupied a different salin-

ity range. The first six species in Table 2 list species life-stages that

occupy low to moderate salinity ranges. It is of interest that the salin-

ity range occupied by each resident species life-stage stayed about the

same between seasons, although the areas occupied expanded associ-

ated with increases in freshwater inflow during the summer. Red drum

and spot were classified as estuarine transients because they spawn in

the Gulf ofMexico. But both species life-stagesmoved into low salinity

(0.05–5 psu) in the Upper P segment of the lower Peace River during

part of the year (early-juvenile red drum in winter, early-juvenile spot

in spring).

Delta-gamma GAMs associated with GAMLSS were used, with FIM

data collected from 1996 to 2013, to estimate seasonal population

numbers in the CH study area for eight species by life-stages (Rubec

et al., 2019). In our most recent study (Rubec et al., 2021), seasonal

habitat grids for temperature and salinity were created using data

derived from hydrodynamic modelling conducted from 2007 to 2014

by SWFWMD (Chen, 2020).

The seasonal population number estimates (Table 2) in the Base-

line and Minimum Flows study (Rubec et al., 2021) for species life-

stages in CH averaged across years (2007–2014) were lower than

those averaged across years (1996–2013) during the previous study

(Rubec et al., 2019). Since the same FIM data were used to create

seasonal HSM maps for species life-stages in both studies, the dif-

ferences in population number estimates appear to be related to the

habitat grids. The depth, bottom type, and dissolved oxygen grids

used were the same in both studies. Hence, the lower population

estimates in the 2021 study appear to be related to the seasonal
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12 RUBEC ET AL.

F IGURE 6 Habitat suitability model (HSM)maps (within and transfer) in Charlotte Harbor for adult Bay Anchovy in spring produced using:
A-habitat layers and suitability functions ‘within’ Charlotte Harbor and B-habitat layers fromCharlotte Harbor and suitability functions
‘transferred’ from Tampa Bay. Suitability functions TSOD

temperature grids and seasonal salinity grids derived from data pro-

duced by hydrodynamic modelling and used for the Baseline and

Minimum Flows analyses (Rubec et al., 2021). The most likely expla-

nation is that the higher population number estimates in the 2019

study were related to generally higher rainfall and freshwater inflows

that occurred prior to 2007, which influenced seasonal salinity grids

(Rubec et al., 2019).

2.11 Coastal studies

Electronic Logbooks West Florida Shelf Two electronic logbook (ELB)

systems were developed in 2001 and 2005 by FWRI in cooperation

with Versaggi Shrimp Corporation and Sasco Inc. (Rubec et al., 2016a,

2016b). The shrimp species fished were primarily pink shrimp (Farfan-

tepenaeus duorarum) on the West Florida Shelf (WFS) and primarily

brown shrimp (Farfantepenaeus aztecus) along the coast of Texas. ELB

software was used to record catch, effort, and environmental data on

computers situated in the wheelhouse of three shrimp fishing vessels

fishing on the WFS (both ELB studies) and along the coast of Texas

(first study). A specific conductance, temperature, depth (CTD) data

logger associated with each boat’s trynet recorded vertical and hori-

zontal profiles with both ELB studies. Counts of shrimp numbers from

the trynet and weights of size grades of shrimp species obtained from

the main trawls were recorded on the computer by each shrimp boat

captain. Positions (latitude and longitude) automatically recorded by

each boat’sGlobal Positioning Systemalloweddetermination of fishing

effort (hours fished). Data collected by the CTDwere displayed on the

computer in the wheelhouse of each vessel to depict changes in tem-

perature, salinity, anddepthover thepath takenby the trynet. TheELBs

for both studiesmaintained a database of use by each boat captain and

provided catch, effort, and location data to FWRI to support modelling

andmapping using GIS (Rubec et al., 2016b).

The University of South Florida (USF) maintains a network of data

loggers on the WFS. Circulation modelling was conducted monthly

for 16 months using the Finite Volume Coastal Ocean Model. The
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RUBEC ET AL. 13

F IGURE 7 Habitat suitability map for adult southern kingfish in Tampa Bay during summer derived from fisheries-independent monitoring
(FIM) data collected during the recent time period (1998–2009). Mean gear-corrected catch-per-unit-efforts (GC-CPUEs) used to create the
internal verification histogram are included in the associated table. ZAGA is an abbreviation used by Rigby and Stasinopoulos which stands for
Zero Adjusted Gamma. It is associated with GAMLSS. ZAGA is similar to the gamma distribution but uses zeros adjusted by adding a small
coefficient. HSM zone: 1= low, 2=moderate, 3= high, and 4= optimum. Suitability functions TSODB

F IGURE 8 Habitat suitability map for adult Southern Kingfish in Tampa Bay during summer derived from fisheries-independent monitoring
(FIM) data collected during the early time period (1989–1997). Mean GC-CPUEs used to create the external validation histogram are included in
the associated table. Suitability functions TSODB
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14 RUBEC ET AL.

TABLE 2 Changes in population numbers of species life-stages by season between Baseline andMinimum Flows in lower Peace River/lower
Shell Creek and Charlotte Harbor

Life-stage Season Population number Population number Percent change

Species Baseline MinimumFlows Population No.

juvenile+adult Fall 701,377 620,900 11.5

Hogchoker Winter 553,351 482,250 12.8

Spring 126,269 102,233 19.0

Summer 124,983 109,281 12.6

juvenile+adult Fall 337,046 315,665 6.3

Blue crab Winter 5,577,933 5,338,615 4.3

Spring 204,920 189,248 7.6

Summer 93,881 89,385 4.8

juvenile Fall 983,889 863,283 12.3

Sand seatrout Winter 16,827 14,446 14.1

Spring 4,527,044 4,388,843 3.1

Summer 2,999,378 2,369,853 21.0

early-juvenile Fall 480,831 414,399 13.8

Southern kingfish Winter 289,190 267,599 7.5

Spring 289,894 255,701 11.8

Summer 177,108 146,191 17.5

Juvenile Fall 411,688,848 386,446,156 6.1

Bay anchovy Winter 1,278,661,747 1,213,423,074 5.1

Spring 2,098,586,359 1,996,069,439 4.9

Summer 301,026,145 278,322,254 7.5

Adult Fall 409,669,579 386,497,346 5.7

Bay anchovy Winter 1,114,145,755 1,069,235,403 4.0

Spring 2,098,463,644 1,995,985,434 4.9

Summer 275,313,382 278,372,737 1.1

Early-juvenile Fall 12,599,998 12,357,379 1.9

Red drum Winter 2,771,344 2,762,907 0.3

Spring 363,119 363,129 0.0

Summer 265,019 250,736 5.4

Early-juvenile Fall 6153 6635 7.8

Spot Winter 107,931 106,339 1.5

Spring 783,736 770,237 1.7

Summer 58,781 6,1605 4.8

Note: Percent changes in population numbers between flow conditions: decreasing (regular font) and increasing (bold font) (Rubec et al., 2021).

oceanographers at the USF modelled and mapped circulation patterns

on the WFS from March 2004 to June 2005 to predict monthly bot-

tom temperature, bottom salinity, and bottom current patterns (speed

and direction). Geologists at the University of Colorado aggregated

available grab sampling data from the U.S. Geological Survey and other

sources and produced maps depicting bottom sediment types at sam-

pling locations on the WFS. GIS staff at FWRI interpolated the data

collected by the shrimp boat captains, oceanographers, and geolo-

gists to produce habitat grids and maps for the WFS (Rubec et al.,

2016b).

Monthly HSM maps (from March 2004 to June 2005) for pink

shrimp on the WFS were created using the catch, effort, and environ-

mental data collected on shrimp fishing vessels and the habitat data

provided by oceanographers and geologists (examples in Figure 10).

CPUEs in pounds per hour were graphed across environmental gradi-

ents using SAS or SAS JMP to produce suitability functions for depth

and bottom type, and seasonal functions for fitted CPUEs by tem-

perature, salinity, current speed, current direction from origin, aspect,

and shrimp fishing zones. Fitted CPUEs from the suitability functions

were applied to the habitat grids and monthly HSM maps created
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RUBEC ET AL. 15

F IGURE 9 Back-transformed suitability functions for juvenile+adult Hogchoker in Charlotte Harbor during the fall, across environmental
gradients for salinity (Sal), temperature (Tem), dissolved oxygen (DO), depth, and histograms for bottom type, gear type, and year output from the
delta-gamma generalized additive model (GAM) analysis. The dashed lines are upper and lower confidence intervals. Bottom type: 1= sand,
2=mud, 3= submerged aquatic vegetation. Gear types: gear 20= 21.3m circular bag seine, 23= 21.3m boat bag seine, 160= 183m haul seine,
180= 61m haul seine, 300= 6.1m otter trawl

within the shrimp fishing boundary (Rubec et al., 2016b). The analy-

ses demonstrated that shrimpwere significantlymore abundant on the

WFS associated with onshore currents during 2004 than during 2005

when offshore currents prevailed. This can also account for increas-

ing mean CPUEs associated with higher current speeds, and higher

CPUEs were found associated with currents coming from the north-

west during 2004. The cooperative research approach sponsored by

the Gulf and South Atlantic Fisheries Foundation supported sustain-

able fisheries, better fisheries management, and the delineation and

management of essential fish habitat.

The areas analyzed in the estuaries and coastal zones of Florida

used either HSI or HSM modelling and mapping (Table 3). The

table progresses from the estuaries to coastal zones. The collec-

tion of pink shrimp data on the WFS and brown shrimp data along

the coast of Texas in 2001 and pink shrimp data on the WFS in

2005 was conducted in collaboration with Versaggi Shrimp Cor-

poration (Rubec et al., 2016a, 2016b). The second study on the

WFS, using catch, effort, and environmental data collected on shrimp

fishing vessels along with circulation modelling data provided by

RobertWeisberg (University of South Florida) and sediment grain size
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16 RUBEC ET AL.

F IGURE 10 Themaps depicted include bottom temperature (◦C) in August 2004, bottom types and shrimp fishing locations (red dots) from
October to December 2004, current speed and current directions from origin for November 2004, and a habitat suitability modelling map for pink
shrimp abundance (low to optimum gear-corrected catch-per-unit-efforts [CPUEs]) in November 2004 on theWest Florida Shelf.

data from Chris Jenkins (University of Colorado), represents cost-

effective collaborations with the fishing industry, oceanographers, and

geologists.

HSManalyseswere conductedduring2004–2005usingpink shrimp

data collected monthly on fishing vessels on the WFS (Rubec et al.,

2016b). Suitability functions were used with habitat grids derived

from benthic sampling that did not change (depth and bottom type)

and grids derived from circulation modelling that changed between

months and years (salinity, current speed, and current direction) to

create CPUE grids, which were averaged to derive predicted CPUE

grids.

HSMmaps depicting distribution-abundance of pink shrimp for the

WFSwere createdmonthly for16monthsbyusingdelta-gammaGAMs

and transferring CPUEs from the fitted functions to habitat grids for

water current patterns andother environmental variables (Rubecet al.,

2016b). Spatial distributions and highest seasonal abundance of pink

shrimp were associated with onshore currents and upwelling onto the

WFS duringOctober to December 2004. The study demonstrated that

bottom currents during the fall were primarily from the northwest.

The upwelling of nutrients onto the WFS probably supported pro-

duction of food for pink shrimp such as benthic algae and planktonic

organisms.
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RUBEC ET AL. 17

TABLE 3 Evolution of habitat mapping and habitat suitability modelling in Florida estuaries and coastal zones

Papers and reports Areamapped Model type Model validation

Christensen et al. (1997) Pensacola Bay HSI-3 species Expert opinion

Rubec et al. (1998a) Southeast Florida coast Pink shrimp and stone Species life histories andHSIs

Big BendNWFlorida coast Crab closure zones being developed

Rubec et al. (1998b) Tampa Bay Charlotte Harbor HSI model Reciprocal SI transfer developed

between estuaries

Rubec et al. (1999) Charlotte Harbor fall season HSI-fall SIs transfer from TB to CH

Rubec et al. (2001) Charlotte Harbor four seasons Seasonal HSIs SIs within and transfer

in both estuaries

Clark et al. (2002) Pensacola Bay-Galveston Bay Seasonal HSIs Mean SIs Pensacola Bay

vs. mean CPUEs Galveston Bay

Rubec et al. (2005) Tampa Bay-Charlotte Harbor Seasonal HSMs Reciprocal CPUE transfer between

estuaries four species life-stages

Rubec et al. (2009) Tampa Bay-Charlotte Harbor Seasonal HSMs Reciprocal CPUE transfer between

estuaries 11 species life-stages

Rubec et al. (2006) Rookery Bay-Fakahatchee Bay Seasonal HSMs Seasonal CPUES transferred from

CH linked to habitat grids

Rubec et al. (2016a) West Florida Shelf in 2001 Monthly HSMs CPUES from ELBs and habitat grids

Rubec et al. (2016b) West Florida Shelf in 2005 Monthly HSMs CPUEs from ELBs and habitat grids

from oceanographers and geologists

Rubec et al. (2016c) Tampa Bay Seasonal HSMs CPUEs and habitat grids estimate

population numbers for pink shrimp

Rubec et al. (2019) Charlotte Harbor Seasonal HSMs CPUEs linked to habitat grids

Population estimates to create seasonal HSMmaps

Rubec et al. (2021) Charlotte Harbor Seasonal HSMs CPUEs associatedwith habitat grids

population estimates for withdrawal conditions based on

Baseline andMinimum Flows

Abbreviations: CH, Charlotte Harbor; CPUEs, catch-per-unit-efforts; ELBs, electronic logbooks; HIS, habitat suitability index; HSMs, habitat suitability

models; SIs, suitability indices; TB, Tampa Bay.

3 DISCUSSION

The creation of HSI maps provides useful information on spatial distri-

butions of species life-stages basedon frequency of occurrence data. In

many cases, this is the only data available for management of habitats

and species in estuaries and coastal zones. There are a variety of spa-

tial ecologicalmethods for analysesof presence/absencedata including

species distribution modelling (Hunsaker et al., 1993; Skidmore et al.,

2011).

Browder and Moore (1981) reviewed literature concerning the

effects of freshwater inflowon fish and invertebrate species inbays and

estuaries situated in the Gulf of Mexico. Freshwater inputs to estuar-

ies appear to enhance the production ofmarine organisms because the

highest marine standing stocks along shorelines are found in or near

estuaries. With respect to habitat areas, they noted that there are at

least three reasons why the production of fishery species may corre-

late with area of favourable habitat: (1) growth may be related to the

total quality of available food, and total quantity of available food is

the product of food concentration and area; (2) survival and growth

rates probably are negatively density dependent; therefore, the larger

the favourable HUA, the higher the survival and growth rates within it;

and (3) the smaller the area of favourable habitat, the greater the per-

centage of juvenile animals found in poor habitat, where lower survival

and growth rates would be expected. They proposed an input–output

model of freshwater inflow tied to fisheries production with the pro-

duction area being based on a combination of dynamic and stationary

habitats. Sincenoanalyseswerepresented to support these assertions,

they should be considered to be hypotheses.

Browder (1991) noted that estuaries serve as nursery habitat for

many fishery species, including those caught offshore. Many species

of fish and shrimp spawn offshore, then newly hatched larvae or early

juveniles move into the estuary. Relative densities of juveniles in estu-

aries suggest that shallow seagrass beds, tidal creeks, emergent marsh

vegetation, andmangroveprop roots areoptimal juvenile habitat. Post-

larvae first settle out of the plankton into a demersal life in the freshest

part of the estuary. They then gradually move to more saline areas as
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18 RUBEC ET AL.

they grow. Freshwater is the basis of estuarine production, establishing

the salinity gradients, circulation patterns, and nutrient concentrations

that distinguish estuaries from the rest of the coastline.

The main goal of the studies in 2009 within TB and CH was to

conduct analyses using suitability functions reciprocally transferred

between the estuaries to produce seasonal HSM maps for various

species life-stages (Rubec et al., 2009, 2016d). The transfer of suitabil-

ity functions between estuaries produced similar HSM maps in each

estuary, provided the suitability functions (within and transfer) were

similar.

The early-recent analyses in 2012 (Figures 7 and 8) demonstrated

that similar suitability functions (internal and external) from the same

estuary produced almost identical HSMmaps (Rubec et al., 2016c). But

it is not safe to assume that the statistical analyses associated with

the HSMs using fewer than five factors always predicted the same sig-

nificant factors. The factors can be significant in HSMs without the

suitability functions (fitted splines) being very similar. Different depth

ranges in each estuary resulted in differing suitability functions for

depth (within and transfer) being produced by the TB and CH HSMs.

Different within and transfer HSM maps were produced when the

functions were applied to the habitat grids in each estuary. If the suit-

ability functions associated with significant factors were different, it

was not possible to derive similar HSMmaps from the fitted splines.

HSManalyseswere conducted inTBduring2013–2014usingv70of

the HSM software (Rubec unpublished) and in CH during 2015–2016

using v73 of the software in R (Rubec et al., 2019, 2021). SWFWMD

provided predicted seasonal grid data for temperature and salinity in

CH for each year from 2007 to 2014 derived from hydrodynamicmod-

elling (Chen, 2020). We intended to test transferability of the models

between TB and CH. But this did not happen due to time constraints

and because themonths associatedwith the non-conventional seasons

used for the CH freshwater inflow studies in 2019 and 2021 were dif-

ferent from themonths comprising conventional seasons usedwith the

HSM analyses for TB.

The salinity ranges in optimum zones occupied by each resident

species life-stage in the lower Peace River remained about the same

across seasons, while the spatial distribution of salinity zones in the

river expanded associated with changes in freshwater inflow (Rubec

et al., 2019). The spatial distributions and abundance of six resident

species life-stages of fish and blue crab were highest in different salin-

ity segments of the river for most seasons. The Upper P segment had

low salinity (0.5–5.0 psu). The abundance of juvenile+adult Hogchoker

was highest in this salinity segment for all four seasons. The abundance

of early-juvenile Red Drum was highest in this segment during win-

ter (January–March), and highest for early-juvenile Spot during spring

(April–June). The question becomes did the species life-stages studied

have preferences for lowormoderate salinity ranges orwere their spa-

tial distributions related to the abundance of prey organisms sustained

bynutrients entering the lowerPeaceRiver associatedwith freshwater

inflows?

Rubec et al. (2019) noted that SWFWMD had sponsored short-

termmonitoring and research studies to relate the species composition

and abundance of phytoplankton, zooplankton, larval fish, and lar-

val invertebrates to changes in salinity and temperature as well as

other water quality and benthic habitat variables in the lower Peace

River. The short-term studies and the research by Rubec et al. (2016c,

2019, 2021) with early-juvenile to adult life-stages of fish species, pink

shrimp, and blue crab did not discuss the effects of nutrient load-

ing on the production of species life-stages or fisheries production in

estuaries situated in southwest Florida.

Peebles et al. (1991) conducted a fish nursery study in the tidal

portion of LittleManatee River entering TB to determine relationships

with physicochemical gradients and the distribution of food resources.

Ichthyoplankton, juvenile fishes, zooplankton, phytoplankton, water

chemistry, and freshwater inflows were monitored over 2 years.

Salinity zone volumes in the tidal river were found to have a curvilin-

ear relationship with freshwater flow. The tidal portion was heavily

utilized by young estuarine-dependent fish species. Migrations into

the tidal river were evident in relationships between fish length and

salinity at capture and also in age-specific plots of fine-scale spatial

distribution. Most fish species migrated to and concentrated within

the lower 16 km of the Little Manatee River during the post-larval or

early-juvenile life-stages, with spatial peaks inmean fish concentration

coinciding with peaks in mean mysid, amphipod, and harpacticoid

copepod abundance. Calanoid and cyclopoid copepods, which invaded

the lower river from TB at times of low discharge, appeared to bemore

susceptible to discharge-induced displacement downstream than did

mysids, amphipods, and harpacticoid copepods. Various nutrients and

dissolved organic carbon were positively correlated with freshwater

discharge, while chlorophyll-a levels in the water column of the upper

tidal river were negatively correlated with discharge. A trophic study

indicated that detritus deposition and benthic diatom productionwere

important contributors to the base of the tidal river’s food web, with

mysids, amphipods, harpacticoid copepods, and juvenile anchovies

functioning as trophic intermediates for young estuarine-dependent

fishes.

Peebles et al. (1996) monitored spatial distributions and abun-

dances of copepod nauplii, copepodite/adult copepods, and the larvae

of Bay Anchovy in TB at 2-week intervals for 2 years. All possible

pairings of the three time-series variables yielded significant posi-

tive correlations. Nearly all of the collected anchovy larvae occurred

with prey (nauplius) densities higher than those reported to affect

larval starvation. The larval association with abundant prey could be

explained as (1) the remnants of earlier larval starvation or (2) spawn-

ing being concentrated in zooplankton-rich waters. To evaluate these

hypotheses, the diet of adult Bay Anchovy was analyzed, and egg/adult

prey surveyswere conducted across a 290 km2 area of TB. In five of the

six spatial surveys, Bay Anchovy egg abundance was correlated with

the abundance of calanoid copepods (primarily adult Acartia tonsa).

Calanoids were aggregated near sites of stable freshwater discharge

during a dry season but became dispersed as discharge increased dur-

ing a rainy season. Among spatial surveys, egg abundance exhibited a

strong non-linear relationship with calanoid aggregation. These find-

ings suggest that the size-specific fecundity of Bay Anchovy is related

to adult prey availability, with adult prey availability being represented

by a combination of abundance and patchiness.
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RUBEC ET AL. 19

Bay Anchovy egg abundance in the tidal portion of the Manatee

River in TB was compared with conditions in the spawning ground

before and after spawning to distinguish prey-supply-based spawn-

ing responses from post-spawning advective effects (Peebles, 2002).

Plume fronts were a prominent feature of the spawning ground.

Egg distribution, copepod distribution, and front development were

surveyed 25 times across a wide range of freshwater inflow condi-

tions. Surface-front strength (maximum interpolated salinity slope)

was strongly correlated with the size of the frontal zone. Eggs were

most abundant landward of the frontal zone at a location with consis-

tently high abundance of the copepod A. tonsa, which is consumed by

adult and larval Bay Anchovy. Large, significant changes in egg abun-

dance were observed over both long (seasons) and short (<3 days)

periods. An El Niño-associated flood event caused the rapid evolution

of a large, seaward-moving frontal system that initially had a negative

effect on egg abundance. Spawning resumed in reduced salinity follow-

ing passage of the front, demonstrating a level of plasticity in spawning

response to salinity change. A stepwise regression model explained

92% of the variation in egg abundance. Egg abundance appeared to be

determined initially by pre-spawning prey supply and temperature, and

subsequently by variable retention behind the frontal zone.

Since salinity covaries with the amount of freshwater inflow, it

may be serving as a marker of the low salinity water mass contain-

ing nutrients rather than a direct driver of fish and macroinvertebrate

species distributions (Rubec et al., 2019). The role of salinity in pat-

terning species distributions and determining overall abundance is

especially important given that salinity is amajor characteristic of estu-

arine habitat that will be affected by changes in water management.

Relationships with salinity are key to predicting species distributions,

species abundances, and their changes in relation to freshwater inflow

in Florida estuaries. Research should be conducted in Florida estuaries

to determine nutrient inputs associated with freshwater inflows and

used to develop associated food web models. However, this is not a

practical method for water managers to presently use in setting Min-

imum Flows and Levels. A percent-of-flow approach to support water

withdrawals and maintenance of salinity ranges that are not detri-

mental to fish and macroinvertebrate species has been adopted by

SWFWMD (Flannery et al., 2002; SWFWMD 2010). It appears likely

that both salinity and the availability of prey influence spatial dis-

tributions and population abundance of early life-stages of fish and

macroinvertebrate species in estuaries. Inmany cases, it is not possible

to separate the effects of salinity from the availability of prey.

The finding that each species life-stage studied occupied a differ-

ent salinity range in CH that stayed about the same between seasons

(Rubec et al., 2019) is not explained by the existing literature. Research

should determine prey items consumed by each species life-stage and

whether their prey items are similar within each species’ salinity range

between seasons.

Analyses using models and GIS, summarized in the present paper,

provide information concerning the seasonal habitat requirements of

estuarine and coastal species of fish andmacroinvertebrates. They can

be used to help determine EFH and habitat areas of particular concern

to support ecosystem-based fishery management, to support inclu-

sion of fish habitat information in fisheries ecosystem plans by U.S.

fishery management councils, to determine critical habitats for threat-

ened and endangered species, to support oil spill response and natural

resource damage assessments of areas impacted by chemical spills,

to support the placement and management of artificial reef fisheries,

and to support coastal zone planning and management (Rubec, 1999;

Rubec et al., 2019).

The studies by Rubec et al. (2016c, 2019, 2021) have mapped

habitat types in TB and CH and modelled and mapped the seasonal

abundance of species life-stages. Mean CPUEs multiplied by the areal

extent of suitability zones (HUAs) were used to derive estimates of

population numbers. While FWRI collects extensive data in Florida

estuaries, there is limited use of the FIM data. The creation of sea-

sonal HSM maps for fish and macroinvertebrate species life-stages in

estuaries is an important use of the data. The prediction of population

numbers from the HSM maps makes this spatial modelling-mapping

approach a stock assessment method. This fills an important gap,

since no one has been estimating population numbers of fish and

macroinvertebrate species life-stages in estuaries situated in Florida

and elsewhere.

Stock assessments generally need time series of abundance over a

period of 6 or more years. One advantage of HSM analyses using FIM

dataand salinity and temperaturepatternsderived fromhydrodynamic

modelling (Chen, 2020) is it can facilitate the assessment of impacts on

population numbers from short-term climatic events such as droughts

or flooding. The data could be used to create interannual CPUE time

series and seasonal HSMmaps by year.

HSMmaps, derived fromdelta-gammaGAMs linked to habitat grids,

can be used to support management due to changes in environmental

conditions and changes in freshwater inflows to estuaries. They pro-

vide useful information concerning the seasonal habitat requirements

of estuarine species for various life-stages. The main products are pre-

dicted grids with GC-CPUEs computed in numbers per square meter,

HSM maps created using GIS, and seasonal estimates of population

numbers derived from the maps. Salinity was statistically significant

for most species’ life-stages that were analyzed. Therefore, analyses

such as those reported here canbeused to informmanagement actions

associated with water withdrawals or climatic effects. Given appropri-

ate actual or simulated environmental data, HSMmaps and associated

analyses of species life-stages can be prepared to support various

management scenarios.
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